If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+30n-40=0
a = 1; b = 30; c = -40;
Δ = b2-4ac
Δ = 302-4·1·(-40)
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{265}}{2*1}=\frac{-30-2\sqrt{265}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{265}}{2*1}=\frac{-30+2\sqrt{265}}{2} $
| 4.2g+7=2.2g+17 | | n^2+10n-32=0 | | -8y+8=377-7 | | 10y+23=4+26 | | (25964-h)-2468=18191 | | 736+(q-123)=938 | | 33x-34=180 | | 736+(q+123)=938 | | 2-6(2x)+8=0 | | 356-(t-23)=243 | | 5w+32=13w | | 2/3x=5/2+0.2 | | 2u=24-u | | 45+x=77 | | 1/4(3b-5)=21/2-1/3(b-5) | | 2+x=600 | | 3x+4x+2x=54 | | -6g+5=4g | | 2x=54=4x-6=180 | | 4(5x-9)=-2(x+7 | | 227-15x=7x+7 | | 0=y3 | | 73=8x+11 | | 5(x+3)=7x+4 | | 9/5=30/x | | 4(9.75h+3)=150 | | 4)9.75h+3)=150 | | 5(9.75h+3)=150 | | 16x+8x^2+12=0 | | z=1/2+5/3 | | (5x-33)+(2x+60)=180 | | 3(2-3r)=18 |